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Abstract 

A single-crystal X-ray structure analysis of decag- 
onal m165Cu20Co15 has been performed using the 
n-dimensional approach. Five-dimensional space 
group PlOJmmc, ~ = 0.2656 (2), a* = 
0-24107 (3) A -a, di = 3"368 (1), d5 = 4.1481 (3) A, a 0 
= 60, a;5 = 90 ° (i, j =  1,..,4), volume of the five- 
dimensional unit cell 12 = 298.2 A 5, Mr = 39.08, 
F(00000) = 15.0, Dx = 4.4 Mg m-  3, /.t = 12.0 mm- 
Mo Ka, A = 0.71069 ,~, wR = 0"098 for 259 inde- 
pendent reflections with I > 2o-(1) and 11 variables. 
The structure was solved by Patterson analysis and 
subsequent least-squares refinement, both in the 
five-dimensional description. There are three atoms 
in the asymmetric unit. Five-dimensional Fourier 
and difference Fourier syntheses show the pent- 
agonal shape and chemical structure of the atoms 
parallel to the internal space. The three-dimensional 
decagonal structure is built up o f  periodically 
stacked sandwiches which consist of two planar 
quasiperiodic layers related by the tenfold screw axis. 
Characteristic large motifs of the crystalline Ala3Fe4 
structure type are found in a new arrangement in the 
quasiperiodic layers. The appearance of pentagonal 
channels which are partly empty or occupied statis- 
tically is noteworthy. 

Introduction 

Since the detection of quasicrystals six years ago 
hundreds of studies have been published laying the 
physical and crystallographic foundations of this 
new type of ordered matter. Most of the investiga- 
tions have focused on three-dimensional quasi- 
periodic icosahedral phases, with fewer papers 
dedicated to the decagonal crystals which are quasi- 
periodic in two dimensions and periodic in the third. 
Initially, much theoretical work was concerned with 
the two-dimensional Penrose tiling which was 
assumed to be typical of a quasiperiodic layer. 
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Henley (1986) discussed sphere packings and local 
environments of lattices of that type, and Levine & 
Steinhardt (1986) and Socolar & Steinhardt (1986) 
dealt with the definition and structure of two- 
dimensional quasicrystals as well as with possible 
unit-cell (thick and thin rhombi) configurations and 
local isomorphism classes. Jari~ (1986) described fun- 
damental diffraction characteristics, and Janssen 
(1986) introduced the n-dimensional approach for 
the description of quasicrystals. Kumar, Sahoo & 
Athithan (1986) treated the characterization and dec- 
oration of two-dimensional Penrose lattices. Pavlo- 
vitch & K16man (1987) and Ishihara & Yamamoto 
(1988) studied the structural properties of general 
Penrose tilings applying the n-dimensional approach. 
Of course, this list of important papers is far from 
being complete. 

Most of the experimental work on decagonal 
phases has been carried out on the systems AI-Mn 
and A1-Fe. Because of the lack of appropriate single 
crystals of these metastable quasicrystalline phases, 
powder diffraction or spectroscopic (e.g. EXAFS 
and NMR) techniques have been applied in nearly 
all quantitative investigations. The first single-crystal 
X-ray structure analysis on decagonal AI-Mn is 
described in Steurer & Mayer (1989) and Steurer 
(1989, 1990b). A short overview of the experimental 
work on decagonal A1-Mn may be found in Steurer 
(1989) and a detailed review on quasicrystal structure 
analysis is given in Steurer (1990a). 

Detection of the decagonal phase in the system 
A1-Cu-Co provided the first example of a stable 
two-dimensional quasicrystal (He, Zhang, Wu & 
Kuo, 1988). Single crystals with decaprism mor- 
phology (~m and mm size) have since been grown by 
slow cooling from the melt (Kuo, 1988, 1989). The 
quality of these stable decagonal quasicrystals is high 
as indicated by selected-area electron diffraction, 
convergent-beam electron diffraction and X-ray dif- 
fraction patterns showing sharp Bragg reflections 
(He, Wu, Meng & Kuo, 1990). It can even be 
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improved by adding a few percent of silicon as 
demonstrated for the A1-Mn-(Si) system. The 
A1-Cu-Co system is the only one which has decago- 
nal quasicrystals with several possible translation 
periodicities along the tenfold axis: approximate 
values of 4, 8, 12 and 16 A have been observed (He, 
Wu & Kuo, 1988), corresponding to two-, four-, six- 
and eight-layer stackings. 

Almost all decagonal phases are closely related to 
crystalline phases with similar composition. These 
crystalline phases, as has been demonstrated by 
Zhang & Kuo (1990), may be interpreted as Penrose 
tiling approximants, at least in terms of the metrics. 
Consequently, the metrics of decagonal A165Cu20Co15 
show a close resemblance to those of 'r/-mll3Co4 
(Hudd & Taylor, 1962), which has the All3Fe4- (or 
FeA13-) type (Black, 1955a,b) structure. The mono- 
clinic angle, fl = 107.9 (1) °, of the B-phase is very 
close to the value of 108 ° found for the tenfold 
symmetry of the deca/~onal phase. Its b-lattice 
parameter [b = 8.122 (1)A] is about twice the trans- 
lation period d5 = 4.1481 (3) A. On the one hand, the 
significant difference between b = 8.122 (1) and 2d5 
= 8.2962 (6) A (if the diffuse scattering leading to a 
doubling of d5 is considered) is a simple proof that 
our crystal cannot be a decagonally twinned crystal- 
line r/-phase. On the other hand, it indicates a less- 
dense packing of the quasiperiodic layers than for 
the crystalline layers. 

Transmission electron microscopy studies by 
Zhang & Urban (1989) provided the first evidence of 
the existence of extended planar defects and disloca- 
tions (mainly with the Burgers vector parallel to the 
tenfold screw axis) in this decagonal quasicrystal. 

The aim of the present study is to give quantitative 
structural information about the decagonal phase 
using X-ray single-crystal techniques and to elucidate 
the structural relationships with the crystalline 
~7-phase. By analogy with the regular three- 
dimensional structure analyses, however, only a kind 
of idealized average structure can result from the 
techniques applied. The condensation of the experi- 
mental Bragg peaks with finite full-width at half 
maximum (FWHM) to points on the quasiperiodic 
lattice nodes and the neglect of diffuse scattering 
imply an infinite quasicrystal built up of strictly 
ordered averaged atoms. 

Higher-dimensional structure analysis 

Why do we use and what is the meaning of a 
'five-dimensional structure analysis'? The problem 
which we are confronted with when we want to solve 
the structure of decagonal A165Cu20Co~5 is to trans- 
form the experimental information (intensities on the 
nodes of a quasiperiodic reciprocal lattice) into struc- 
tural knowledge: in other words to determine what 

kind of atoms occupy which sites on a quasiperiodic 
direct lattice. The mathematical connection between 
the reciprocal and the direct-space information is 
given by the Fourier transform. Using intensities for 
Fourier coefficients the Patterson function (weighted 
vector diagram) results. With known structure 
factors (amplitudes and phases) electron density 
maps of the quasicrystal structure can be obtained. 
For a regular three-dimensional structure analysis 
the characterization of a finite (relatively small) unit 
cell facilitates the whole procedure for which 
numerous powerful techniques have been developed. 
In the case of aperiodic structures, however, it is not 
possible to define a finite three-dimensional unit cell 
either in direct or in reciprocal space. 

An elegant way out of this dilemma, the n- 
dimensional approach, was first formulated by de 
Wolff (1974) for one-dimensional incommensurately 
modulated structures. It has been further developed 
by Janner & Janssen (1980a,b), de Wolff, Janssen & 
Janner (1981), Janssen (1986) and others, and may 
be employed in all cases of aperiodic structures 
which give diffraction patterns with sharp Bragg 
spots: the observed diffraction pattern is considered 
to be the projection of an n-dimensional periodic 
reciprocal lattice on the real three-dimensional 
world. For mathematical reasons, the three- 
dimensional aperiodic structure can then be found at 
the intersection of the n-dimensional periodic 
supercrystal with the real world. The dimension n 
necessary for the embedding is determined by the 
number n of rationally independent reciprocal basis 
vectors needed to index the diffraction pattern with 
integer numbers (quasilattice of rank n). 

Because of the n-dimensional periodicity it is pos- 
sible to define a simple n-dimensional unit cell and 
apply the conventional tools of crystallography, such 
as Fourier and Patterson syntheses, isomorphous 
substitution and contrast variation, in an extended 
form. In this way the structures of some quasicrys- 
talline phases have been solved: icosahedral 
A1-Mn-Si by six-dimensional Patterson analysis 
(Gratias, Cahn & Mozer, 1988) and structure 
refinement (Cahn, Gratias & Mozer, 1988) as well as 
by isomorphous substitution (Janot, de Boissieu, 
Dubois & Pannetier, 1989); icosahedral A1-Cu-Li by 
contrast variation and subsequent six-dimensional 
refinement (de Boissieu, Janot, Dubois, Pannetier, 
Audier & Dubost, 1990) as well as by refining a 
six-dimensional structure model derived from a 
three-dimensional decorated Penrose tiling (van 
Smaalen, de Boer & Shen, 1990); decagonal A1-Mn 
by five-dimensional Patterson analysis (Steurer, 
1989) and subsequent five-dimensional least-squares 
refinement (Steurer, 1990b). 

These and other n-dimensional structure analyses 
have shown that the experimentally simple Patterson 
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method may be applied very successfully in n- 
dimensional crystallography (Steurer, 1987, 1990a), 
since the number of atoms in the n-dimensional unit 
cell of quasicrystals is generally very small and the 
resulting n-dimensional Patterson maps only exhibit 
a few maxima. Consequently, the atomic coordinates 
can be derived in a straightforward manner and may 
serve as starting parameters, together with arbitrary 
values for the other atomic parameters, in a subse- 
quent least-squares structure refinement. By analogy 
with regular three-dimensional structure refinements, 
the positional parameters in the starting set have to 
be given to within a few tenths of an ~ since they 
determine the phases of the structure factors. The 
shape parameters, given by a harmonic or 
anharmonic temperature factor in the three- 
dimensional case and, for example, by a pentagonal 
density function parallel to VI for a Penrose quasilat- 
tice, result more or less automatically from appro- 
priate arbitrary starting values. 

The goal of this type of structure refinement is to 
obtain a physically reasonable parameterization of 
the structure and derive the phases of the structure 
factors. The n-dimensional structure refinement is 
merely one necessary intermediate step in the course 
of the determination of the correct phases (signs), as 
it is in a regular three-dimensional structure analysis. 
The fitting procedure gives the best possible set of 
phases which is necessary for an optimal representa- 
tion of the crystal structure in electron density maps 
resulting from the Fourier syntheses. 

E x p e r i m e n t a l  

A decaprismatic crystal of decagonal AI65Cu2oCo]5, 
with approximate dimensions 0-05 x 0.07 x 0.08 mm, 
was mounted on top of a glass capillary, with the 
tenfold axis nearly parallel to it. The preparation and 
morphology of the crystal have been described in 
detail by He, Wu, Meng & Kuo (1990). X-ray pre- 
cession (Fig. la) photographs show sharp Bragg 
reflections indicating a large coherence length of 
quasicrystalline regions. Scans on the four-circle dif- 
fractometer, however, gave FWHM about twice as 
large as for regular crystals on this instrument. There 
seems to be no dependence of the FWHM on the 
internal component of the diffraction vector II-Id. If 
one compares, for instance, the strong reflections 
along the straight line indicated in Fig. l(a) the 
FWHM appears to be equal in spite of very different 
values for IHd. One observes, however, small shifts 
of high IHd reflections from this straight line 
indicating some anisotropic linear phason strain 
(Steinhardt, 1987). Layers of diffuse scattering 
between layers of sharp Bragg reflections appearing 
on the cone-axis photographs (Fig. lb) may result 
from one-dimensional partial ordering of chainlike 

quasicrystalline domains leading to a twofold trans- 
lation period along the tenfold axis. The diffuse 
scattering is distributed in a similar manner to decag- 
onal AI-Mn, whereas the diffuse streaks in decago- 
nal AI-Fe are parallel to the tenfold screw axis. 
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Fig. 1. (a) Zero-layer X-ray precession photograph of decagonal 
AI65Cu~Co~5. Some high and low I1t]1 reflections are labeled: 
1, (10000); 2, (00T'[0); 3, (22120); 4, (2T'~0); IH, I is 0.27, 0.16, 
1.09 and 0.92, respectively. Bragg spot 4 shows a significant 
shift from its ideal position on a straight line indicating some 
(rather small) anisotropic linear phason strain. (b) Cone-axis 
photograph with zero- and first-layer rings marked. Also visible 
are the diffuse layer rings causing a doubling of the d5 lattice 
constant. On both photographs the more intense reflections are 
strongly overexposed to make weaker diffraction phenomena 
visible. [Mo Ka, focusing quartz monochromator,  Rigaku RU 
200 rotating-anode assembly, 0-3 x 0.3 mm fine focus, 60 kV, 
90 mA,/~ = 30 °, 148 h exposure time for (a) and 72 h for (b).] 
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Data collection 

Enraf-Nonius CAD-4 four-circle diffractometer, 
Mo Ka radiation, graphite monochromator. Lattice 
parameters refined from 24 reflections, to/20 scans 
with to = (1.5 + 0.35 tan0) °, extended 25% at each 
side for background determination. Out of the 
infinite number of possible reflections within 0 _< 0 _< 
45 ° in a first run all those within two asymmetric 
units were measured with - 3  _< hi <-3, i = 1 to 4, 
and 0 _< h5-< 8. This data set includes all reflections 
observable on the X-ray precession photographs• 

A denser set of reflections may give rise to resolu- 
tion problems and would not yield many more 
observable intensities since it is known that the geo- 
metrical form factor gk causes a rapid decrease of the 
intensities with increasing internal component of the 
diffraction vector (see Fig. 2). In this way, 2235 
intensities were collected with a constant scan time of 
120 s per reflection• The 260 reflections of this data 
set with I > 20-(/) and 32 additional reflections were 
remeasured in ten symmetrically equivalent asym- 
metric units with a scan time of 60 s per reflection. 
The resulting 2920 intensities were corrected for Lor- 
entz and polarization effects as well as for absorption 
(maximum and minimum transmission factors: 0.607 
and 0.483, respectively). After averaging (Ri = 0•062) 
292 unique reflections remained• In the subsequent 
structure refinements the 259 reflections with I >  
20-(/) were included. The distribution of intensities 
as a function of the external and internal com- 
ponents of the diffraction vector is shown in Fig. 2 
and illustrates possible truncation effects as a conse- 
quence of the limited data set available. 

In this connection, the truncation effects parallel 
to the external and internal space are of comparable 
magnitude. For an ideal quasicrystal the intensities 
are densely distributed in the three-dimensional dif- 
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Fig. 2. Intensity statistics as a function of the internal versus the 
external component of the diffraction vector H = (HE,H0. The 
size of the circles is proportional to the respective structure 
amplitudes. 

fraction pattern. However, if we unfold the diffrac- 
tion pattern into five-dimensional reciprocal space 
then the situation is analogous to that in the recipro- 
cal lattice of a three-dimensional regular structure. 
Going to high indices parallel to the external space, 
the intensities fall off owing to the atomic form 
factor fk(Hv) (which has no influence on neutron 
diffraction) and the temperature factor Tk(HE). 
Parallel to the internal space the action of the geo- 
metrical form factor gk(H0 and the phason factor 
Tk(HO cause the diffraction peaks to fade away 
smoothly. Therefore, there is no danger in our case 
(Fig. 2) of strong disturbing ripples and spurious 
peaks in the Fourier or Patterson maps which would 
result from an abrupt truncation of a series of large 
Fourier coefficients. 

S y m m e t r y  a n d  m e t r i c s  

A detailed analysis of electron and X-ray diffraction 
patterns of decagonal A1-Cu-Co gives the Laue 
symmetry lO/mmm (D]oh), which together with the 
extinction rules, reduces the possible space groups to 
P105 mc and PlOJmmc. From characteristic sections 
of the five-dimensional Patterson function (Fig. 3) it 
can easily be deduced that all atoms occupy special 
sites. The non-centrosymmetric space group can be 
rejected, therefore, at least in a first approximation. 

All reciprocal lattice vectors of each quasiperiodic 
reciprocal lattice layer can be represented by linear 
combinations of five basis vectors pointing to the 
corners of a regular pentagon a*=a*(cos27ri/ 
5,sin2~ri/5,0) with i = 0,..,4. The vector components 
refer to a Cartesian coordinate system with unit 
vectors v~, v2 and v3. Four of the five vectors are 
rationally independent. Perpendicular to the plane 
formed by this basis-vector set and parallel to the 
tenfold axis a further reciprocal basis vector a~ = 
a*(0,0,1) is required. This set M* of all reciprocal 
vectors HE = Z/5=lhiai * in the external space VE 
remains invariant under the action of the symmetry 
operators of the group Dloh. Since we have the same 
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Fig. 3. C h a r a c t e r i s t i c  (10110)  sec t ion  o f  the  f i ve -d imens iona l  
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basis. 
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situation as for decagonal A1-Mn (Steurer & Mayer, 
1989; Steurer 1989) the same formalism holds for 
deriving the reflection indices, the five-dimensional 
symmetry and the metrics. Therefore, in the fol- 
lowing only a summary of the results is given. 

A basis for the representation of the lattice ~* in 
the five-dimensional configurational space V which is 
projected parallel to the internal space V~ onto M* 
and is invariant under the action of the group D~0h 
can be written as di* = (a*,0,ca3*) with i = 1,..,4 and 
d* = (0,a~,0) (short D basis), c can be chosen arbitra- 
rily without any consequence for physical space. If 
we refer the vectors a* to a five-dimensional orthog- 
onal coordinate system with unit vectors vi, v* with 
vivj* = t~ 0 (short V basis) then we obtain the expres- 
sion d* = a*(cos27ri/5,sin2rri/5,0,ccos6rci/5,csin6~ri/ 
5) with i = 1,..,4 and d~ = a~'(0,1,0). It should be kept 
in mind that the vectors vi, vi* with i = 1,2,3 belong 
to VE and those with i = 4,5 to V~. The reciprocal 
lattice vector of the D basis has the form H = 
)-'./5=lh,di*. The basis of the direct five-dimensional 
lattice E is easily constructed by using the 

- -  a i  ~-'.}=iUj.iwj and di 1/a* relationships d * -  * s , = 
x Y.)=lu0.v i with (Uii)=[(uij)-r] r and we obtain 

di = 2/ (5a*)(cos2~ri /5-  1,sin2rri/5,0,ccos61ri/5- 1, 
csin6-~ri/5) with i = 1,..,4, ds = I/a*(0,0,1,0,0) and 
did* = ~0. The metric tensor g of the lattices E* and 
E for the simple case c = 1 is given by 

with 

A 

C 

g =  C 

C 

0 

A = d~'.d* = 2a .2, 

C C C 0 

A C C 0 

C A C 0 

C C A 0 

0 0 0 B 

. . = a ~  2 B=ds .d5  and C =  
d*.d]~i = -1/2a~, .2= di*dj*cosl04"5 ° for the recipro- 
cal lattice E* and A =di.di = 4/(5~2), B = ds.ds = 
1/a~ 2 and C = di.dj~,i = 2/ (5~ 2) = d, djcos60 ° for the 
direct lattice ~. Inserting the experimental values 

= 0.2656 (2) A-~ (i = 1,..,4) and a* = 
0.24107 (3) A - i  we obtain di* = 21/2a* = 
0-3756 (3) A -~ (i = 1,..,4) and ~ = 0-24807 (3) A -~ 
and d~ = 2/(5~/2a *) = 3-368 (1) A ( i=  1,..,4) and d5 = 
4.148 (3) A. 

To describe the five-dimensional unit cell and to 
formulate the structure factor we use the D basis; for 
discussion of the characteristic features of the inter- 
nal and external spaces with sections through the 
five-dimensional Fourier function the V basis is more 
appropriate. 

Structure solution and refinement 

The structure of decagonal A165Cu20Co15 was solved 
in a straightforward manner. The five-dimensional 

Patterson function (Fig. 3) is easy to interpret in a 
unique way and the coordinates for a model with 
two atoms in the asymmetric unit [atoms 1 and 2 of 
Fig. 5(a)] can be derived. These atoms occupy special 
positions on the body diagonal [11011] of the four- 
dimensional subcell as do four-dimensional atoms in 
the case of Penrose tiling (see, e.g., Yamamoto & 
Ishihara, 1988). The site symmetry of these Wyckoff 
positions is 5mm, i.e. 5m [cf. Table 4.7 of Janssen 
(1988)] in the (00011) plane and m along [00100]. The 
shape of the five-dimensional atoms parallel to the 
internal subspace VI has to be invariant applying 
that point symmetry. For general Penrose tilings this 
shape corresponds to irregular decagons [cf. Fig. 10 
of Pavlovitch & K16man (1987)]. Consequently, 
five-dimensional atoms of this kind in positions 
derived from the n-dimensional Patterson function, 
and with arbitrary atomic size paramater ,~k, have 
been used as the starting set for the five-dimensional 
least-squares refinements. The function minimized 
was X 2= ~w,(lFobs(H)l-lFcalc(H)l)  2, with weights 
w~ = k/trZ[F(H)] and k = (N - 1)/X2in (Prince, 1982). 
The reliability factors used were R = (Y.llFobs(n)]- 
IFcal~(H)l!)/Y.IFob~(H)l and wR = {Y.w;[lFob,(H)l- 
IFcalc(n)l]2/ZwilFobs(n)12} I/2. All sums are taken 
over N = 259 structure factors. The structure-factor 
formula applied in the refinements was 

F(H) = 1 //2~Y.k exp(27rt1-I.rk)fk(Hv)pk Tk(HE,H0gk(H~) 

where the diffraction vector H = (HE, HI) = Y.;h~d* 
E ,  E *  (i = 1,5), with HE = hHv* + h2 v2 + h3 v3 and HI = 

hsv5 , are hay 4 + which the external and the internal 
components, respectively, of the diffraction vector. 
The positional vector rk is given by Y.ixidi for atom k. 
The atomic scattering factor fk(HE) depends only on 
the external component of the diffraction vector. The 
total site-occupancy factor Pk is pAl +p~M, where 
TM represents the transition metals Cu/Co. The 
temperature factor is given by 

T~(Hv.,H~) = exp{ _ 1/4[B~(hm + h2e2)a.2 + B33h 3 E  E2 

+ BI(h4 ~ + h~)a*2]}. 

This expression contains the isotropic in-plane term 
B~ and the perpendicular component B~3, both in 
the external space, as well as one coefficient B z in the 
internal space. The external temperature-factor com- 
ponents of the five-dimensional atoms have the same 
meaning as the temperature factor of a regular struc- 
ture. The internal component, corresponding to 
smearing of the five-dimensional atom parallel to the 
internal space, leads to a higher frequency of inter- 
sections with physical space. Thereby, a number of 
interstitial sites become occupied at the cost of the 
regular ones. Consequently, displacive disorder may 
be described by the external part and substitutional 
disorder by the internal part of the temperature 
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factor. The geometrical form factor 

gk(Hi) = (1/a*)2y.tsinOm + l{At[exp(iAt + iAk) -- 1] 

- At + ~[exp(iAtZk)- 1]/[AtAt + , ( A t -  At + ,)]} 

with At = 27rHve~ and led = 1/a['. D~ is the area of 
the five-dimensional unit cell projected on Vt. 

The trial starting set for the five-dimensional least- 
squares refinement contained two atoms with irregu- 
lar decagonal shape parallel to Vt, which converged 
to regular pentagons during the course of the calcu- 
lations. Therefore, the respective parameters have 
been reset to give this regular pentagonal shape and 
have not been refined further. The residual electron 
density in the difference Fourier maps indicated one 
additional atom which was included as atom 3 in the 
subsequent refinements. The internal temperature- 
factor coefficients, which refined to unphysical 
negative values or to values smaller than their stand- 
ard deviations, were reset to zero and kept fixed 
during the remaining calculations. In addition, the 
thermal parameters of atoms 2 and 3 were con- 
strained to common values. The five-dimensional 
atoms were assumed to be chemically homogenous 
parallel to V= to reduce the number of variables. A 
possible chemical structure may be described by 
assigning A1 and transition-metal atoms to different 
regions of the five-dimensional atoms corresponding 
to differently coordinated vertices [cf. Fig. 10 of 
Pavlovitch & K16man (1987)]. With adequate resolu- 
tion this chemical structure should become visible in 
difference Fourier syntheses as a deviation from a 
homogenous density distribution. The partial occu- 
pancy factors p ~  and pk T M  have been constrained to 
give the chemical composition of the decagonal 
phase. 

The refinements converged smoothly to R = 0.167 
and w R  = 0.098 for 259 reflections with I >  2o-(1) 
and 11 variables. The quality of the least-squares fit 
is illustrated in an Fobs(l-l)/F~a~c(l-l) plot (Fig. 4). Small 
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Fig. 4. Fo~(H)IF,~Ic(H) plot for the final model. 

significant deviations from the ideal distribution may 
result from deficiencies in the structure model since it 
neither accounts for the chemical structure of the 
five-dimensional atoms nor for the residual electron 
density appearing in the difference Fourier synthesis 
(Fig. 5). Another contribution may arise from 
systematic experimental errors during data collec- 
tion. Despite these problems, the distribution in Fig. 
4 indicates a highly reliable assignment of signs to 
the structure factors (in centrosymmetric structures, 
phases can only take on values of 0 and 7r, corre- 
sponding to the signs + and - ) .  The slight changes 
in structure amplitudes which would bring all points 
in Fig. 4 onto the straight line would not entail a sign 
reversal, which would require the structure ampli- 
tudes to pass through zero. 

The calculated density 

The density of the refined structure model can be 
calculated in the following way: each section of a 
five-dimensional atom with the physical space gives 
an atom. The probability of such sections is propor- 
tional to the area D~, of the internal component of 
the n-dimensional atom k. For the case f2~,--/2 ~ 
(projection of the five-dimensional unit cell on V=) 
this probability becomes equal to one. Thus, the 
ratio D~,/D ~ gives the relative frequency of the three- 
dimensional atoms (vertices) generated from the 

1 . 0  l- . . . . .  ~ j , - -  

t . . . .  J 

i 
. . . .  Q - _ _ .  

I : ( ~  
0 . 0 1  , - . * .  .1 . 3,  I 

0.0 .5 1.0 1.5Xl÷Y 2. 
~4 (a) 

1 . 0  

X3 

.5 

0 . 0  !~- 
0 . 0  

I----' 

.5  1 . 0  

(b) 
1 . 5 x 1 + x 4 2 .  

Fig. 5. (10110) sections of the five-dimensional (a) Fourier and (b) 
difference Fourier function calculated after the last refinement 
cycle using Fobs(H) and Fobs(H)- F~¢(H), respectively, as 
Fourier coefficients. All coordinates are given on the V basis. 
The highest maximum in (b) amounts to about 4% of that in 
(a). 
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five-dimensional atom k. In our case the ratio 
( ~ , ) / ~  amounts to 0.89. Consequently, each 
five-dimensional unit cell intersected by three- 
dimensional physical space generates 0.89 three- 
dimensional atoms on average. For numbers greater 
than one, atoms with too small a distance from each 
other might be generated. The number density pN = 
(Y'.S2~,)/g2 (f2 is the volume of the five-dimensional 
unit cell) gives the number of three-dimensional 
atoms (vertices I per unit volume. In our case pN = 
0.070 vertices A -3 corresponding to a mean atomic 
volume of 14.3 A 3 compared with 15.6 A 3 for crystal- 
line AII3CO4. Knowing the number density, the den- 
sity of the quasicrystal can be calculated as p~ = 
MrpN/NL (NL corresponds to the Avogadro number). 
Inserting the experimental values we obtain pc = 
4.4 Mg m -3 (since the experimental density of the 
decagonal phase is not yet known, the density of a 
fictitious mixture of the elements with the composi- 
tion m165Cu2oCo15 is given for comparison as p = 
4.8 Mg m-3). The density of the r/-phase, which can 
be written a s  A176.sCo2ys ,  is p = 3-81 ( 5 ) M g m  -3 
(Hudd & Taylor, 1962). 

Results and discussion 

Table 1 lists the refined atomic parameters in terms 
of the five-dimensional description.* All refined 
atoms occupy special sites (Xg = n/5, i = 1,..,4) as is 
the case for the two-dimensional Penrose tiling. This 
confirms the assumption of Yamamoto & Ishihara 
(1988) that the layers making up decagonal struc- 
tures consist of partial Penrose tilings. The external 
thermal parameters (which contain dynamic and 
static components) are similar to those of regular 
structures. The values of the internal temperature- 
factor components show that it is not necessary to 
account for phasons which would be described by a 
large internal temperature factor. 

A more vivid impression of the structural charac- 
teristics than that obtained by a numerical descrip- 
tion can be conveyed by special sections of the 
five-dimensional Fourier and difference Fourier 
functions. Thus, Fig. 5(a) shows a Fourier map of 
the (10110) plane containing all atoms in the five- 
dimensional unit cell. The maxima marked 1, 2 and 
3, and their symmetry equivalents, correspond to the 
atoms included in the refinements. Some additional 
maxima appear on the difference Fourier map (Fig. 
5b); the maximum peak heights are about 4% of that 
of atom 1 in the Fourier map. The peak distances to 
the next-nearest atoms are approximately 0.2-0.3 A 

* A list of structure factors has been deposited with the British 
Library Document  Supply Centre as Supplementary Publication 
No. SUP 53320 (3 pp.). Copies may be obtained through The 
Technical Editor, International Union of Crystallography, 5 
Abbey Square, Chester CHI 2HU, England. 

Table 1. Parameters o f  the five-dimensional atoms of  
decagonal A165Cuz0Co15 with e.s.d. 's in parentheses 

The parameters listed are fractional atomic coordinates x~ (D 
basis), two external (B% Bg3 ) and one internal (B 1) temperature- 
factor coefficient (A2), total site-occupancy factor Pk, partial AI- 
occupancy factor pAJ of  that  site, and the radial atomic size 
parameter  Ak as a fraction of  l/a~* (negative ak denotes opposite 
direction of  a,eO. 

Parameter Atom 1 Atom 2 Atom 3 
Site symmetry 5ram 5ram 5m 
Multiplicity 2 2 4 

x5 k k 0"04 (1) 
By, 1"22 (8) 1"8 (2) 1"8 
Bg3 0"34 (6) 2"2 (3) 2"2 
/ f  0.00 0.00 0.00 
pk !.00 0.86 (9) 0.25 (5) 
p~k I 0.08 1-00 1 "00 
ak -0.335 (2) 0.444 (5) 0.16 (2) 

indicating a statistical substitutional disorder which 
is larger for atom 2 than for atom 1. In addition, the 
short distance (1-1 A) between atoms 2 and 3 only 
permits an alternating occupation of these sites. 
Indeed, this is reflected in the reduced occupation 
probabilities of 0-86 (9) for atom 2 and 0.25 (5) for 
atom 3. Further disorder is indicated by the residual 
electron density along the [00100] direction. It should 
be noted that the related crystalline 'q-AII3Co4 struc- 
ture also shows some substitutional disorder, which 
is indicated by three partially occupied A1 sites 
(Hudd & Taylor, 1962). 

Looking at the (00011) sections of the five- 
dimensional Fourier and difference Fourier function 
(Fig. 6), which characterize the internal space com- 
ponent of the five-dimensional atoms, the pentagonal 
shape of the atoms parallel to this plane is easily 
recognized. The deviations of the layer-line plot from 
the regular pentagonal form (drawn with the refined 
pentagonal-size parameter As,) result from the chemi- 
cal structure as can be seen in the difference Fourier 
maps. The refined structure model contains five- 
dimensional chemically homogenous atoms and the 
deviations from this given homogeneity are rep- 
resented by the difference Fourier plots. If one com- 
pares, for instance, the relative peak heights at the 
left-hand corner of the pentagons of atom 1 in Figs. 
6(a) and 6(b) one finds that the model displays an 
electron density that is about 15% too high in the 
region corresponding to the fivefold vertex ~J [see 
Fig. 8 of Pavlovitch & Klrman (1987)]. Conse- 
quently, it is A1 atoms which primarily occupy these 
vertex positions in the three-dimensional quasi- 
periodic structure, whereas the other vertices are 
occupied by transition-metal atoms. 

Similarly, one finds that the center of the five- 
dimensional atom 2, which consists completely of AI 



according to our model, should contain about 20% 
less electron density. This can be explained by the 
alternating statistical occupation of the three- 
dimensional atoms generated from the centers (corre- 
sponding to the regular fivefold vertex 55S in the 
three-dimensional structure) of the atoms 2 and 3, 
which is necessary because of the short distance 
(1.1 A) between these atoms. The radially decreasing 
density of the atoms parallel to V~ reflects series- 
termination effects rather than a decreasing occupa- 
tion probability. 

Structure of the layers 

.5 .5 

x5 ~ x5 

0 .0  2 ~ k ~  0 .0  

- . 5  - . 5  

What do the quasiperiodic layers which make up 
the structure of the decagonal phase look like? The 
planes at x3 = 7~ and 3 are symmetrically equivalent 
and related by a 36 ° rotation followed by a shift of 
parallel to [00100]. Fig. 7 shows real-space (11000) 
sections ( - 2 2  x 22 ~)  of the five-dimensional 
Fourier function, in which the solid lines illustrate 
characteristic features. The (10010) sections are also 
shown in each case, to make the correspondence of 
three- and five-dimensional maxima clearer. 

In Fig. 7(a) the highest maxima (corresponding to 
Cu/Co atoms) are connected so as to give a network 

of pentagons and thin rhombi. Each rhombus is 
decorated asymmetically with one weak A1 peak. The 
pentagons (edge length about 4.7/~) contain three or 
five weak maxima (A1), which are quite broad in 
some cases, indicative of displacive disorder. The 
(10010) section in the lower part of Fig. 7(a) links the 
real three-dimensional quasiperiodic and the five- 
dimensional periodic structure. One unit cell is 
marked as containing the atoms 1 and 2. The dashed 
line corresponds to the line at x3 = ~ in Fig. 5(a). One 
sees clearly that the center of atom 2 has a lower 
density than at its periphery. Another important 
feature is that the atoms 2 and 1 occur in pairs, 
connected by a low density, which indicates some 
substitutional disorder. 

Fig. 7(b) shows differently connected maxima in 
order to point out the close resemblance of the 
structures of the quasiperiodic layer of decagonal 
A165Cu20CoI5 with those of the y = ~ layer of crystal- 
line All3Fe4 [cf. Fig. 4 of Black (1955b)]. The half 
unit cell of All3Fe4 is marked with a dash-dotted 
line. Despite small shifts and a slightly different 
distribution of A1 and transition-metal atoms this 
structure element appears to be the same in both 
phases. Because of their higher transition-metal con- 
tent, however, some A1 atoms occuring in the crystal- 
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Fig. 6. (00011) sections (parallel to the internal space VO of the five-dimensional Fourier and difference Fourier functions, respectively, 
of atom 1 in (a) and (b), atom 2 in (c) and (d) and atom 3 in (e) and Or). All coordinates are given on the V basis. Relative peak heights 
are given in arbitrary units. The dashed-line pentagons have been plotted according to the size parameter Ak resulting from the 
refinements. 
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line phase have to be replaced by Cu/Co atoms. The 
pentagons of the network in Fig. 7(b) possess an 
edge length of 2-9 A, smaller then those marked in 
Fig. 7(a) by a factor of 1/~-. Henley (1985) and 
Kumar, Sahoo & Athithan (1986) have already 
pointed out that the puckered layer of the A1,3Fe4 
structure may be considered to be a relaxed 
decorated two-dimensional Penrose tiling. 

One finds alternating filled and empty pentagons 
in the quasiperiodic layer as well as in the crystalline 
one. But, in contrast to the crystalline case, the 
quasiperiodic layers are stacked in such a way as to 
form a set of pentagonal channels parallel to [00100] 
which are empty or occupied statistically, alternating 
with corner atoms. This is illustrated in Fig. 7(c) 
which shows the projection of the structure on 
(11000) [Fourier synthesis calculated with 
F(h,h~h3h40) only]. Despite the disordered content of 
these channels their centers always remain empty. 
The (10010) section of the projected structure makes 
it clear that atom 3 is projected on the low-density 
center of atom 2 and sums to give a fully occupied 
atomic site. 

Stacking of the layers 

The three-dimensional decagonal structure results 
from stacking the quasiperiodic layers, rotated 36 ° in 
each case, one upon another. Because of the pentag- 
onal rotation symmetry, only the stacking order 
ABAB... is possible. Therefore, decagonal A1-Cu-Co 
phases with larger periodiocities cannot result from 
simple stacking variations as in most polytypes. The 

three-dimensional coordination polyhedra are almost 
the same as those occurring in the AI]3Fe4 structure 
[cf. Fig. 1 of Black (1955b)]. Consequently, the inter- 
atomic distances in the quasiperiodic and periodic 
crystal structures are quite similar. 

What are the principal structural differences 
between the quasiperiodic and periodic phases? First, 
the formation of a set of pentagonal channels, 
formed by Cu/Co atoms and occupied in a more or 
less disordered way, may play a role. Secondly, the 
transition-metal subset forms a well ordered network 
in a similar way to the y = 0 layer in A1]3Fe4 [cf. Fig. 
3 of Black (1955b)]. However, in contrast to A I ] 3 C o  4 

or the isostructural A1]3Fe4, which exhibit 'vacant 
regions and inefficient packing' (Black, 1955b), the 
quasiperiodic layers seem to be better accommodated 
by substituting part of AI and Co by Cu. Thirdly, 
these rearrangements allow the building up of the 
decagonal structure by stacking one type of layer 
alone. The two slightly different layers of the AI,3Fe4 
structure type with their 'misfit regions' and the 'Al~4 
in the flat layer (which) is not in contact with any 
atoms of that layer' (Black, 1955b) seem to be a poor 
compromise, which can only be overcome by the 
pentagonal long-range ordering of the quasiperiodic 
layers. 

A comparison with the structure of decagonal 
A178Mn:: (Steurer, 1990b) shows a striking similarity 
of the projected (down 105) structures. Qualitatively, 
this can also be deduced from the great similarity of 
the respective zero-layer X-ray or electron diffraction 
patterns. The only significant difference lies in the 
occupation of the tenfold clusters of pentagonal 
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Fig. 7. Quasiperiodic (11000) sections (parallel to the external s~ace Vr with a size of  about 22 x 22/~) of  the five-dimensional Fourier 
function of  decagonal AI65Cu2oCon5 at (a) x3 = ~ and (b) x3 = z. Characteristic structure motifs are marked which can also be found in 
slightly distorted form in the AI,3Fe4-type structures. The edge length of the large pentagons in (a) is 4-7 ,~, and of  the small ones in (b) 
2.9/~,. (c) The quasicrystal structure projected down the tenfold screw axis [calculated from reflections F(h,,h2,h3,h4,0) only]. 
Additionally, the respective (10010) sections are shown to enable the correspondence between the five- and three-dimensional 
structures to be visualized. All coordinates are given on the V basis. 
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rings: in the present case these pentagons are filled 
alternately, whereas all of  them are full in the case of  
decagonal  A1-Mn. The main  difference between the 
decagonal  phases is the different layer-stacking 
sequence and the existence of  two different layers in 
the asymmetr ic  unit  for the A1-Mn structure. How- 
ever, both have in c o m m o n  the fact that their struc- 
tural building elements are similar  to those of  
crystalline AllaFe4, and that  there appear  to be no 
Mackay  icosahedra.  The most  characteristic struc- 
tural elements are the pentagonal  channels  clustered 
in tenfold rings. 

K H K  is grateful to the Chinese Nat ional  Natura l  
Science Founda t ion  for f inancial  support  and to Mr  
L. X. He for the growth of  the single quasicrystal 
used in this study. 
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Abstract 

[Co(H20)6](BrO3)2, M , = 4 2 2 . 8 3 ,  cubic, Pa-3, a = 
10.3505 (7) A, V = 1 1 0 8 . 8 8 ( 8 )  A 3, Z = 4 ,  D x =  
2.53 g cm -3, a ( M o  K~) = 0.71069 A, /z = 
87.31 c m -  l, F(000) = 820, T = 296 K, R = 0.027 for 
365 unique reflections having I > or/. The single type 
of  Co ion is coordinated by six water-molecule O 
atoms, each at an observed distance 2.095 (2)A,  in 
an array which is regular octahedral  within the esti- 
mated  s tandard deviat ions of  the relevant angles. 

* Author for correspondence. 

0108-7681/90/060712-05503.00 

The single type of  b romate  ion has a B r - - O  bond 
length 1.653(2) A and O---Br---O bond angle 
104.07 (9) ° . The coba l t -oxygen  complex manifested 
rigid-body behavior,  but the bromate  ion did not. 
The cobal t -oxygen distance corrected for r igid-body 
mot ion is 2.099 A. Locat ion and refinement of  the 
two inequivalent  H atoms permit ted detailed analysis 
of  the hydrogen bonding,  which occurs principal ly 
between the oxygen octahedra and the bromate  
groups. This structure is i somorphic  to that of  hexa- 
aquanickel(II)  chlorate recently reported from this 
laboratory.  
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